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AN UPWIND SCHEME FOR THE THREE-DIMENSIONAL 
BOUNDARY LAYER EQUATIONS 

L. J. JOHNSTON * 
Aeronautics/Aerospace Department, von Karman Institute for Fluid Dynamics, 8-1640 Rhode Saint Genise, Belgium 

SUMMARY 
The development of a calculation method to solve the compressible, three-dimensional, turbulent boundary 
layer equations is described. An implicit finite difference solution procedure is adopted involving local 
upwinding of convective transport terms. A consistent approach to discretization and linearization is taken 
by casting all equations in a similar form. The implementation of algebraic, one-equation and two-equation 
turbulence models is described. An initial validation of the method is made by comparing prediction with 
measurements in two quasi-three-dimensional boundary layer flows. Some of the more obvious deficiencies 
in current turbulence-modelling standards for three-dimensional flows are discussed. 
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INTRODUCTION 

It is now feasible to  predict the detailed viscous flow development over three-dimensional surfaces 
such as wings and bodies by solving the Reynolds-averaged Navier-Stokes equations.’ However, 
such calculations are computationally intensive and so are unlikely to be carried out on a routine 
basis in the near future. For this reason the development of efficient solution methods for the 
three-dimensional turbulent boundary layer equations continues to receive much attention. When 
coupled to an inviscid flow solver, such methods provide an economic means of obtaining 
‘reasonable’ predictions of three-dimensional viscous flows, at least in fully attached flow 
situations. The use of inverse solution procedures to march the boundary layer equations into 
separated flow regions is an area of current research activity.2q3 

A EUROVISC workshop was held in Berlin in 1982 to assess the performance of 14 existing 
calculation methods for three-dimensional turbulent boundary layers. Humphreys and Lindhout4 
give a detailed description of the methods, and the results of the workshop comparisons of 
predictions are now a ~ a i l a b l e . ~  Conclusions drawn from the workshop indicate that satisfactory 
calculation methods are available for three-dimensional turbulent boundary layers, but that 
predictions, even for fully attached flows, suffer owing to the current poor state of turbulence 
modelling for three-dimensional flows. The majority of existing ‘production’ calculation methods 
use simple algebraic turbulence models adapted from well established models for two-dimensional 
flow. However, experiments6 indicate that this simple-minded approach is inadequate due to the 
non-isotropic nature of the shear stress vector in three-dimensional flows. 

The present paper describes the development of a new calculation method for compressible, 
three-dimensional, turbulent boundary layer flows. The governing flow equations are solved in 
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differential form using finite difference techniques. A space-marching procedure is used whereby 
the solution is marched away from specified conditions on an initial line, subject to an imposed 
external flow pressure distribution. The boundary layer equations are thus solved in direct mode 
and the solution is forbidden to enter separated flow regions. The method can, however, map out 
the boundaries of such regions. 

A particular consideration in the development of the present method has been the establishment 
of consistent discretization and linearization procedures for the mean-flow momentum and energy 
equations. These procedures can be readily extended to the transport equations used in more 
sophisticated turbulence models. The paper discusses the implementation of representative zero-, 
one- and two-equation turbulence models. The performance of the calculation method (and the 
relative performance of the various turbulence models) is assessed by comparison with some of the 
available experimental data on three-dimensional turbulent boundary layers. It is intended that 
this assessment of some ‘standard’ turbulence models be used as the starting point for 
investigations aimed at improving the current state of turbulence modelling for three-dimensional 
flows. 

The present calculation method has been developed on the basis of experience gained in the 
development and use of two earlier methods. The first method’ was developed at the Aircraft 
Research Association Ltd. in Bedford, U.K. under contract to the U.K. Ministry of Defence. More 
recently, a substantially improved methodsq9 has been developed from which the present 
calculation method is evolved. The detailed differences between these various methods will be 
discussed below. 

MEAN-FLOW EQUATIONS 

The problem to be considered is the turbulent boundary layer development over a three- 
dimensional surface. Figure 1 shows the non-orthogonal surface co-ordinate system in which the 
boundary layer equations are to be solved. X and Yare the surface co-ordinates with a local angle 
8 between them, and the third co-ordinate Z is normal to the surface. The governing mean-flow 
equations for a steady, compressible, three-dimensional turbulent flow are 

continuity 

a(pUh,sin8) a(pVh,sinO) a(pWh,h,sin8) 
= 0, az + ax + a Y  

X-momentum 

p u a u  pvau au 
h ,  8X h,  a Y  az __ + - - + p  W--klcot8pU2 +k,cosec8pVZ + k,,pUV 

Y-momentum 

p u a v  pvav av  
h ,  ax h2 a y  az + - - + p W -  + k, cosec 0 p U 2  - k ,  cot 0 p v2  + k ,  , pu V __ 
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Figure 1. Non-orthogonal surface co-ordinate system 

Z-momentum 

ap 
az 
-- - 0, (4) 

energy 

equation of state 

where U ,  V, W, H ,  p and P are the physical velocity components in the three co-ordinate 
directions, total enthalpy, density and static pressure respectively. U ,  is the total mean velocity 

u:=u2+ v2+2 c o s o u v ,  (7) 
whose value at the edge of the boundary layer will be denoted by U e s .  The local laminar viscosity p 
is given by Sutherland's law and the Reynolds shear stress terms have been modelled by an 
isotropic eddy viscosity p,. The laminar and turbulent Prandtl numbers Pr and Pr, are assumed to 
have constant values of 0.72 and 0.9 respectively. Finally, y is the ratio of specific heats, equal to 1.4 
for air. 
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The above equations are written in terms of mass-weighted average variables and are in non- 
dimensional form (as are all subsequent equations). Variables are scaled with the free stream 
velocity, density, viscosity and a length scale, which can be combined to give the reference 
Reynolds number R. The various metric quantities relating to the surface co-ordinate system are 
defined in the Appendix. The boundary conditions for the mean-flow equations are 

U = V = W = O ,  H = H ,  a t Z = 0 ,  

U = U , ,  V=V,, H = H ,  asZ+co ,  (8) 
where subscripts ‘w’ and ‘e’ refer to conditions at the surface and boundary layer edge respectively. 

Equations (2), (3) and ( 5 )  are to be solved for U ,  V and H, and the three equations can be written 
in the following similar form: 

where 

m = 1 (X-momentum equation) 

cc1= u, 
A , =  -k,cot0, B,=k12, c, =o, b,  =(P+CLtUR, 

cosec2 6 ap cot 6 cosec 8 ap 
R ,  = - VZk,cosec~--- ph, ax+ ph, d Y ’  

m = 2 (Y-momentum equation) 

u, = v, 
A2 = k z l ,  B2= -k2~0tB, c, =o, b, = (P + Pt )/K 

R,= -U2k,cosec8+ ______  cot 6 cosec 0 i?P cosec’ 0 ap 
ph, ax ph, d Y ’  

m = 3 (energy equation) 

a, = H, 

b -i(&+.l) 
3-R Pr  Pr, A ,  = 0, B ,  =O, C, =0, 

A uniform computational grid is to be used in the direction normal to the surface and it is 
convenient to introduce the following scaled co-ordinates: 

tanh[ ( ~ / ~ p d Z ) ’ ” / A ]  

tanh(B) x = x ,  y =  Y, 3 Z =  
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where A and B are constants and 8, is a total momentum thickness 

@k = lrn [P  u t ( u e s  - u t ) / p e  u z s l  dZ. 
0 
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The above scaling of the normal co-ordinate Z ,  when used with a uniform computational grid in 
the transformed co-ordinate z, concentrates points close to the surface and enables an accurate 
evaluation of the skin friction. The scaling with 8, removes most of the boundary layer growth in 
computational space and introduces a stretching function parameter A into the mean-flow 
equations, 

2A2 tanh(B) tanh-'[z tanh(B)] 
1 - [z tanh(B)I2 

A= 

A two-component streamfunction (Y, @) can be defined, 

pWhlh2sin8= - 
a@ ay 

az az pVh,sinB=-, pUh,sinB=-, 

which satisfies the continuity equation exactly, and so equation (1) can be replaced by two 
equations for Y and @. The transformed mean-flow equations are 

streamfunctions 

a@ ay 
aZ a2 

AV8,h1sin8=-, AU8,h2sin8=-, 

a,-equation 

U - - + A  a + V  - - -+B a +---+C a a tb 2- = R  m, (15) (hl, :; m m )  (il,: m m) rn m Ae,aZ 28, az 
where w is a scaled mean velocity normal to the surface, 

and the boundary conditions become 

U = V = Y = @ = O ,  H = H ,  at z=O, 

U = U e ,  Y=V,, H = H ,  asz+co. (17) 
Initial conditions for the calculation must be specified on an x =constant line. The solution is 

marched downstream from this initial line, subject to the external flow and boundary conditions. 
The external flow is supplied to the calculation in terms of the surface pressure distribution. The 
outer boundary conditions on U ,  V and H are obtained by solving the two-dimensional Euler 
equations for the inviscid flow external to the boundary layer. This is done by setting all terms 
involving d/az derivatives to zero in equation (1 5). Alternatively, the external flow conditions may 
be supplied to the method by an independent inviscid flow solver. Additional boundary conditions 
are needed if there is any flow into the computational domain through the two lateral boundaries. 
The set of mean-flow equations is closed once a turbulence model for the eddy viscosity p, is 
specified. 
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DISCRETIZATION OF am-EQUATION 

The transformed momentum and energy equations in the similar form of equation (15) are 
coupled and non-linear. The present method employs implicit finite difference formulae in the y- 
and z-directions to approximate the equations, and so the solution procedure on a given yz-plane 
is iterative. Following J ~ h n s t o n , ' ~ ~  equation (1 5 )  is solved for am, the equation being linearized by 
evaluating all other variables at the previous iteration level. The three equations (m = 1,2,3) are 
now decoupled and can be solved in sequence for U ,  V and H respectively. This approach can be 
contrasted with that in the original method of Johnston,' which uses a Newton linearization 
procedure. Also, certain mean-flow variables are scaled with their values at the edge of the 
boundary layer. The resulting set of discretized equations are more complex than those of the 
present method, since each of equations (2), (3) and ( 5 )  is treated in a slightly different manner. The 
present approach to discretization and linearization is much more consistent and does not appear 
to increase the number of iterations required to converge the solution. 

As shown in Figure 1, the continuous solution of the mean-flow equations in the computational 
domain is approximated by discrete solutions at a finite number of points. A regular Cartesian 
grid is used in transformed space, there being (I, J ,  K) grid points with spacings (Ax, Ay, Az) in the 
three co-ordinate directions (x, y, 2). For convenience, Ax = Ay = Az = 1, the spacings between grid 
points in physical space being taken care of in the determination of the surface grid metric 
quantities (see Appendix) and the normal co-ordinate transformation, equation (10). Suffices 
( i , j ,  k) are used to denote a variable evaluated at a particular grid point. 

The discrete form of equation (15) for a,,, is centred at ( i ,  j ,  k), and the various finite difference 
formulae used to approximate the convective transport terms are given below. For clarity, the 
suffix m is dropped from a, in this section, and suffices on the right-hand side of an expression are 
suppressed if their values are unchanged from those on the left-hand side. Finally, a prime on a 
quantity denotes a variable evaluated at the previous iteration level. 

v(aqax) 
The solution of the mean-flow equations is marched downstream in the x-direction, subject to 

the imposed pressure distribution external to the boundary layer. Such a direct mode calculation 
will break down if reverse flow occurs in the marching direction. The method therefore assumes 
U > O ,  and the following approximation to this convective transport term is used: 

where the coefficients PI to p3 are given in Table I. Note that for i > 2 a second-order-accurate one- 
sided formula is used to discretize dollax. At i = 2 there is no station corresponding to i - 2, since 
i - 1  is the initial station, and so a first-order-accurate formula is used. This approach is 

Table I. Coefficients for discretization of 
x-derivatives in convective transport terms, 

equation (18) 

i 81 B 2  P 3  

> 2  312 -412 112 
2 1 - 1  0 
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permissible since an initial value problem is being solved and the solution further downstream 
should not be too dependent on the starting conditions. 

The earlier method of Johnston'*9 uses a Crank-Nicholson scheme at all x-stations to discretize 
&/ax, with equation (15) being centred at ( i -  1/2, j ,  k). Experience with this earlier method 
indicates that the use of the Crank-Nicholson scheme can lead to an oscillatory behaviour of 
quantities such as the skin friction and limiting surface streamline angle (these are sensitive 
parameters since they are obtained by numerical differentiation). This behaviour occurs primarily 
when marching away from the initial data, when the mean-flow equations are solved in 
conjunction with a two-equation turbulence model. The present use of an upwind scheme, 
equation (18), suppresses this tendency. 

The procedure followed-if, during the course of a calculation, U becomes negative at any point 
across the boundary layer is discussed in the next section. 

V(WaY) 
The treatment of this convective transport term is the key to the successful development of a 

practical calculation method. The way in which aapy  can be approximated is related to the 
numerical scheme used to advance the solution from i-1 to i .  The majority of existing 
methods4. l o  march the solution in the positive y-direction (see Figure l), converging the solution 
at station (i,j) before going on to station (i, j +  1). This approach is satisfactory provided that VBO 
for all points across the boundary layer at station (i, j). Otherwise, the solution at  (i,j) will be 
dependent upon information at station (i, j + l), which is not available. In such circumstances it is 
usual to evaluate da/dy at ( i -  1, j )  for any points at (i, j )  where V<O. This approach is subject to a 
stability restriction that requires the streamline through (i ,j ,  k )  to intersect the yz-plane through 
xi- between yj and yj+ 1. Lindhout et al.' take an alternative approach which involves marching 
the solution in both the positive and negative y-directions, the direction being determined by the 
sign of the maximum local value of V across the boundary layer. 

A more consistent approach is to remove the stability restriction altogether by using an implicit 
solution procedure in both the y- and z-directions. In this way the solution over the whole yz-plane 
through xi is obtained simultaneously. Nash and Scruggs'Z and Tassa et a l l 3  both follow this 
approach, employing alternating direction implicit (ADI) solution procedures. The present 
method adopts the technique devised by Johnston8* whereby the solution is obtained simultan- 
eously over a yz-plane using a numerical scheme which marches in the positive y-direction only. 
The marching from j =  1 to J is carried out at  each iteration of the solution procedure. By this 
means the information at ( i ,  j +  l), required to evaluate when V<O, is always available (at the 
previous iteration level). 

The term V(da/ay) is approximated using a general five-node computational m ~ l e c u l e : ~ ~ ~  

The coefficients y1 to Y 8  can be chosen to give various discrete approximations to da/ay. For 
example, Table I1 gives the coefficients appropriate to a second-order-accurate upwind scheme 
(the default scheme of the method) and the QUICK scheme of Leonard.14 Both of these schemes 
have an upwind bias, and the formulation of equation (19) allows the bias to be determined by the 
sign of the local mean convection velocity V. 



1050 L. J .  JOHNSTON 

Table 11. Coefficients for discretization of y-derivatives in convective transport terms, 
equation (19) 

i Y1 Y 2  Y 3  Y4 Y 5  Y6 Y7  Y S  

(a) Second-order upwind scheme 
1 0 0 0 0 
2 1 0 - 1  0 
2 < j < J - 1  0 3 -4  1 
J-1 0 3 -4  1 
J 0 3 -4  1 
(b) QUICK scheme 
1 0 0 0 0 
2 1 0 - 1  0 
2 < j < J - 1  213 1 - 2  113 

1 - 2  113 
3 -4  1 J 0 

J - 1  213 

- 1  
- 1  
- 1  

0 
0 

- 1  
- 113 
- 113 

0 
0 

4 - 3  
4 - 3  
4 - 3  
1 0 
0 0 

4 -3  
2 - 1  
2 - 1  
1 0 
0 0 

0 
0 
0 

- 1  
0 

0 
- 213 
- 213 
- 1  

0 

The standard second-order-accurate upwind or QUICK schemes can be used at all stations in 
the range 2 < j < J - 1. Table I1 indicates that the schemes can also be used at j = 2 and j = J - 1 if 
the sign of V allows it, otherwise a centre difference scheme is adopted. 

There will be flow into the computational domain through the lateral boundaries if V>O at j =  1 
or V<O at j = J .  In such circumstances the default action of the method is to set &/dy to zero at 
grid points where there is flow into the computational domain, with the second-order-accurate 
upwind scheme being used for all grid points with outflow. Alternatively, one or both of the lateral 
boundaries can be designated a plane of symmetry on which the appropriate equations are solved; 
see Reference 15 for details. This approach would be taken to calculate the flow development on a 
body at incidence if both the body and flow have a plane of symmetry. A final alternative is a body 
ofgeneral shape, or for a symmetric body with a free stream flow involving both incidence and side 
slip. Periodic boundary conditions would be applied at the two lateral boundaries in such a case, 
the boundaries being purely notional. The standard differencing schemes given in Table I1 for 
2 < j < J -  1 can then be used for j =  1 to J .  

w(aa/az) 

This term represents convective transport across the boundary layer. A centre difference 
discretization of &/dz can induce 'wiggles' in the profile of o! at the edge of the boundary layer. The 
wiggles occur when w < O  and appear to be due to the scaling of the normal co-ordinate with the 
local total momentum thickness, equation (10). Therefore a centre difference formula is used only 
if w b 0, and a one-sided formula is used if the convective transport across the boundary layer is 
directed towards the surface: 

SOLUTION PROCEDURE 

After following the linearization and discretization procedures described in the previous section, 
the three mean-flow equations represented by equation (15) can be solved for U ,  V and H 
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respectively. The solution procedure adopted is as follows (again, subscript m on a, has been 
dropped for clarity). Define the correction to as 

ai,j,k=a:,j,l,+dak, (21) 

where, as usual, the prime indicates a variable evaluated at  the previous iteration level. The 
discretized version of equation (15) can then be written in the form 

Akdak- 1 + Bkdak + Ckdak+ 1 =Dk for 1 < k < K .  (22) 

This tridiagonal system of equations is completed by the discrete versions of the surface boundary 
condition at k = 1 and the outer boundary condition at k = K ,  equation (17). 

The calculation method in its present form is applicable to fully turbulent flow only. Therefore 
starting profiles must be provided for the mean-flow quantities at each y-station on the initial line 
i =  1 (see Figure 1). The solution is then marched in the x-direction, away from these starting 
conditions. The initial mean-velocity profile at each y-station is defined in two parts, with 
components U ,  in the local external streamline direction and U ,  in the crossflow direction, 
orthogonal to Us. The streamwise profile is defined in analytic form as a combined law-of-the- 
wall/law-of-the-wake, together with a near-wall damping function. The crossflow mean-velocity 
component is related to the streamwise component via the profile family of Mager. An extension of 
the Crocco relation to three-dimensional flow is used to derive the initial total enthalpy profiles 
from the mean-velocity profiles. Finally, a Van Driest transformation enables the analytic profile 
representation to be extended to compressible flow. The starting conditions for the calculation are 
thus completely defined by a few global parameters at each y-station on the initial line. These 
starting procedures are identical to those used by the earlier method of to which 
reference should be made for further details. 

The iterative solution procedure can now be summarized. Equation (22) is solved in turn for U ,  
Vand H at all grid points along the surface normal at station (i, j ) .  Thereafter, equation (14) is used 
to update the two streamfunctions Y and 0, the discretization of the streamfunction relations 
being centred at (i - 1/2, j, k). This sequence is repeated for j = 1 to J and represents one cycle of the 
iteration procedure. The process is repeated until the solution over the whole yz-plane through xi 
has converged. A suitable convergence criterion can be defined in terms of the corrections to the 
mean-velocity component U :  

1dukl< for all j ,  k.  (23) 

In its current form the present calculation method solves the boundary layer equations in direct 
mode and so will break down in the presence of separated flow. The separation of a three- 
dimensional boundary layer may be two-dimensional in nature, with the skin friction tending to 
zero. Alternatively, flow separation can be characterized by a convergence of the limiting surface 
streamlines, which results in problems in obtaining solution convergence. The present method 
takes the approach adopted by other direct boundary layer methods, and the solution is not 
allowed to enter separated flow regions. In practical terms, any station ( i s , j s )  at which U becomes 
negative somewhere across the boundary layer is marked as separated flow. 

Similarly, any stations at which the skin friction is calculated to be zero or negative are also 
marked as separated flow. No further use is made of information at these separated flow stations. 
Stations downstream of (is, j s ) ,  i.e. (i, j,) for i = is + 1 to I ,  are also assumed to have separated flow. 
In this way the boundaries of the separated flow region are mapped out as the calculation marches 
downstream in the x-direction. Grid points adjacent to separated flow regions are treated in the 
same way as the two lateral boundaries j = 1 and j = J (see Table 11). This means that y-derivatives 
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are set to zero at points which would require information from inside the separated flow region. 
The problem of marching the boundary layer equations into separated flow regions can be 

overcome using an inverse formulation.2 

TURBULENCE MODELLING 

As noted in the introduction, a major limiting factor on the accuracy of predictions from present- 
day calculation methods is the poor state of turbulence modelling for three-dimensional boundary 
layer flows. The measurements of Elsenaar and Boelsma6 in an infinite swept wing flow illustrate 
some of the current limitations in turbulence modelling. For a flow driven into three-dimen- 
sionality by an imposed pressure distribution, the direction of the shear stress vector lags behind 
that of the mean-velocity gradient vector. Thus the assumption of an isotropic eddy viscosity pl to 
model the two shear stress terms appearing in the momentum equations (2) and (3) is invalid. This 
point has been discussed by van den Berg16 and Rotta,17 the latter author proposing a non- 
isotropic eddy viscosity model. However, the model of Rotta is not independent of the adopted co- 
ordinate system, since it works in terms of velocity components. A second, and perhaps more 
important, feature of three-dimensional turbulent boundary layers is the smaller than expected 
levels of shear stresses in regions of large crossflow. By this is meant that the shear stress levels are 
smaller than those predicted by the straightforward extension of a two-dimensional turbulence 
model to three-dimensional flow. 

Notwithstanding the above discussion, the present calculation method adopts the isotropic 
eddy viscosity assumption and extends a number of existing 'standard two-dimensional flow 
turbulence models to three-dimensional flow applications. An assessment of the accuracy or 
otherwise of these models can be used as the starting point for investigations aimed at improving 
predictions for three-dimensional flows. Three levels of turbulence modelling are considered, these 
being categorized by the number of auxiliary transport equations that have to be solved. 

Algebraic model 

An algebraic turbulence model requires no additional differential equations to be solved. The 
Cebeci-Smith model,' extended to three-dimensional flow by Cebeci et al.,' is used by many 
existing calculation methods. As such, it can be considered as a base-line model against which to 
assess the more sophisticated transport equation models. 

The eddy viscosity distribution is specified in two parts. A mixing length I ,  is defined in the inner 
region of the boundary layer: 

2 

pli = Rpl i  [ (gy + (g) + 2 ~ 0 s  8 g]':', 
where 

1, = f K z ,  K = 0.41, 

f being the Van Driest damping function 

and U ,  is the wall friction velocity. The eddy viscosity in the outer part of the boundary layer is 
given by 
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and represents essentially a constant kinematic eddy viscosity pl/p modified by the intermittency 
function y. 6 is the boundary layer thickness and 

6: = J ( 1  - U,/U,,)dZ 
0 

is a kinematic integral thickness. C is a constant which Cebeci et al.I5 put equal to 0 0 1 6 8 ,  in 
agreement with the formulation for two-dimensional flow. The measurements of Elsenaar and 
Boelsma6 indicate that C decreases in regions of strong crossflow, and this point will be returned 
to in the results section below. Finally, a hyperbolic tangent function is used to ensure a smooth 
transition from the inner to the outer eddy viscosity formulation: 

Pl= Plo tanh (hi /PIo). (29)  

Two-equation model 

The most sophisticated turbulence model implemented in the present calculation method is the 
low-Reynolds-number k--E model due to Chien.Ig The two transport equations employed by this 
model, written in terms of a non-orthogonal surface co-ordinate system, are 

k-equation 

&-equation 

where k is the turbulent kinetic energy and E is the rate of dissipation of k. Pk is the production term 
in the k-equation, 

P ,  = 2 [ (g ) + @'I. 
Again, an isotropic eddy viscosity has been assumed and the eddy viscosity relation is 

pl = C ,  f , R p  k2/C. (33)  
The various low-Reynolds-number versions of the k--E turbulence model proposed in the literature 
can be distinguished by the forms adopted for the damping functionsf,,f,, , f , ,  and the near-wall 
terms ak, me. For the Chien version of the model these functions and terms take the form 

f = I  - e - 0 . 0 1 1 5 Z t  
#k = 2 p / R Z 2 ,  @& = 2 P h / R Z 2 ,  B 7 

11, = 1 ,  E l  fE=e-z+/Z > (34)  f = 1 -0.222e-(RT"3)2, 

with 

Z +  = R p U , Z / p ,  R ,  = Rpk2/pE.  

The definition of the model is completed by specification of the various constants 

c,,=0.09, ok= 1.0, CJ,= 1.3, c,, = 1.37, ct2= 1.8 (35) 
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and boundary conditions 
k = & = O  a t Z = 0 ,  

k = & = O  asZ+co  (36) 

for the k- and &-equations. 

in a similar form to equation (9), where 
Equations (30) and (31) are treated in the same way as the mean-flow equations and are written 

m = 4 (k-equation) 

u, = k, A ,  = 0, B,  = 0, c4 = W P ?  

b 4 = ( f l + P t / a k ) / R ,  R , = P , / p - & ,  

m = 5 (&-equation) 

a5=&, A ,  = 0, B ,  = 0, c5 = CE2fE2  Elk + W P ?  
b, = (P + P t b ,  )IR R ,  = CE,fE,  ( e lk )  PklP. 

The k- and &-equations are linearized by evaluating all terms apart from a,,, in equation (9) at  the 
previous iteration level. Note that the above choices of C,, R,, C, and R ,  are not unique. 
However, the present formulation does not require any special treatment of the production and 
destruction terms to achieve a stable solution to the discretized k- and &-equations. This can be 
contrasted with the approach taken by the original method of Johnston,’ in which special 
procedures were needed to remove step length limitations on the solution of the discretized 
turbulence transport equations. 

One-equation model 

The one-equation turbulence model implemented in the present calculation method is based on 
that used by Hassid and Poreh” and Johnston’’ in two-dimensional flows. Equation (30), in an 
identical form to that used in the Chien k--E model, is solved for the turbulent kinetic energy k. The 
dissipation rate E is determined via an algebraically defined dissipation length scale L,: 

fEk3/’ 0.0856 
0- 1 64 

L,=- & =-- 
L, ’ 

with 

(37) 

The damping function in the eddy viscosity relation, equation (33), is given by 

f,=f,”, (39) 
and the two constants take the values c p  =0.09 and ak = 1.0. 

Starting profiles of the turbulent kinetic energy k must be provided at all stations on the initial 
line for both the one-equation k-L, model and the two-equation k-e model. These are determined 
from eddy viscosity profiles generated by the Cebeci-Smith algebraic turbulence model. Assuming 
an isotropic eddy viscosity, the local total shear stress 7 within the boundary layer is given by 

=‘I [ (g)’ + (gy + 2COS 0 - az - az 
R au avl/’ 
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The local turbulent kinetic energy is assumed to be related to z via the turbulence structural 
parameter a ,  : 

's = a,pk, (41) 
where a ,  will be assumed to be constant across the boundary layer. The initial profiles of k are 
generated using a constant value of a ,  equal to 0.3, in agreement with two-dimensional boundary 
layer data. However, it should be noted that the measurements of Elsenaar and Boelsma6 indicate 
that a, < 0.3 if the flow is significantly three-dimensional. 

Initial profiles of the dissipation rate E required by the k-E turbulence model are generated using 
equation (37) of the one-equation model. Finally, the convergence criterion given in equation (23) 
is supplemented by 

16kkl < lo-' for all j, k ,  

where hk,  is the correction to the turbulent kinetic energy, defined in equation (21). 

RESULTS 

There is still a relative lack of detailed experimental measurements in fully three-dimensional 
turbulent boundary layers. The majority of experiments consider quasi-three-dimensional flows 
so as to reduce the quantity of data to be acquired. The initial validation of the present calculation 
method will therefore be restricted to a consideration of two of these quasi-three-dimensional 
flows. However, the two experiments do involve detailed mean-flow and, in one case, turbulence 
measurements in the boundary layers at a number of stations. The results are presented below in 
terms of a co-ordinate system comprising the local external flow streamlines and their orthogonal 
projections. Thus U s  and U ,  are the local mean-velocity components, within the boundary layer, 
in the external streamline (streamwise) and orthogonal (cross-stream) directions respectively. 

N L R  infinite swept wing experiment 

The NLR experiment simulates the incompressible flow over a 35" infinite swept wing, In 
particular, an initially two-dimensional boundary layer on a planar surface develops into three- 
dimensionality under the influence of an adverse pressure distribution induced by a body sus- 
pended above the surface. Mean-velocity profile dataz2 and measurements of all the Reynolds 
stress components6 are available for this experiment. Figure 2 shows the external flow data, which 
have been smoothed and interpolated onto 73 equally spaced X-stations for the calculations. Both 
the surface pressure coefficient C ,  and the external streamline angle c1 (measured relative to the 
local X-direction) are specified as boundary conditions. This case has been calculated assuming 
the flow to be invariant in the Y-direction (see Figure l), but the experiment does depart from 
infinite swept wing conditions at the more downstream stations. 

Predictions using the standard Cebeci-Smith algebraic turbulence model are compared with 
experiment in Figure 3. The two mean-velocity components are well predicted up to X =0.92 m, 
but the magnitude of the cross-stream velocity is much too low at stations further downstream. 
Also, the calculated flow remains fully attached, whereas surface oil-flow visualization indicated 
flow separation (surface flow completely in the Y-direction) downstream of X =  1.3 m in the 
experiment. Although the present calculation uses a direct mode scheme, van den Berg3 indicates 
that the presence of the flow separation in the experiment does not make such a calculation unduly 
sensitive, at least in the region upstream of the immediate vicinity of separation. Similarly, 
calculations by Abid et aLZ3 using a non-isotropic eddy viscosity model show little improvement 
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Figure 2. External flow conditions for NLR swept wing experiment 

in mean-flow quantities over results with an isotropic eddy viscosity. For these reasons, the level of 
agreement with experiment shown in Figure 3, when using the standard Cebeci-Smith turbulence 
model, is consistent with other independent calculations of this 

The poor prediction of the mean-velocity profile development downstream of X = 0.92 m 
appears to be due to an overprediction of shear stress levels by the Cebeci-Smith model (see 
Figures 3(c) and 3(d)). In fact, the measurements of Elsenaar and Boelsma6 indicate that the 
constant C in equation (27) of the outer eddy viscosity formulation falls significantly below the 
two-dimensional value of 0-01 68. Following Johnston,’ C is made functionally dependent upon a 
measure of the flow three-dimensionality, the limiting surface streamline angle 8, being a 
convenient choice: 

C=max [0~0084,00168-0~016 Ip,I]. (43) 
Figure 3 shows that the predictions are dramatically improved when this modification is 
incorporated into the standard Cebeci-Smith model. The two mean-velocity components and the 
streamwise shear stress now agree very well with experiment up to X = 1.22 m. Also, separation is 
predicted just downstream of this station, which is a little upstream of the position indicated by 
experiment. The cross-stream shear stress levels are still too high, but the use of a non-isotropic 
eddy viscosity will presumably improve these. 

Predictions for this case using the one-equation and two-equation turbulence models are shown 
in Figures 4 and 5 respectively. The one-equation model gives results very similar to those of the 
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Figure 5(a). Two-equation turbulence model results for NLR experiment 
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standard Cebeci-Smith model, although the underprediction of the cross-stream mean velocities 
at the more downstream stations is a little worse. There is a further deterioration in the predictions 
of cross-stream mean velocities with the two-equation turbulence model. The most probable cause 
for this is the overprediction of the streamwise shear stress levels in the inner region of the 
boundary layer compared to the Cebeci-Smith model. The two transport equation turbulence 
models give good predictions of the turbulent kinetic energy at stations upstream of X = 1 m, this 
being particularly true for the two-equation model. 

In conclusion, there are no benefits in using the more sophisticated turbulence models for this 
case, at least with the models in their current form. 

R A E  delta wing experiment 

The second case to be considered is the delta wing experiment of East.2s Figure 6 shows the 
model geometry, which consists of a half-delta wing with a leading edge sweep angle of 76" (semi- 
apex angle e= 14") and a root chord of 7.3 m. The flow is incompressible with a free stream 
velocity of 60 m s- l ,  and the wing is at an incidence angle of 8". The experimental data include 
mean-velocity profiles at a number of stations along a spanwise line inclined 8" to the tunnel floor 
and at a root chord station 5.53 m downstream of the apex. 

The flow is calculated using a surface grid consisting of rays through the apex and lines parallel 
to the measurement plane, with 35 x 107 grid points in the spanwise and chordwise directions 
respectively. Calculations start at a station 2 m upstream of the measurement plane and cover the 
region 0.296 < 8/&<0.804, which is between the attachment line (S/e=0.18) and the secondary 
separation line (8/@% 0.825). Conical flow conditions are assumed and the external flow 
distributions shown in Figure 7 are imposed at all chordwise stations. Starting conditions on the 
initial line are generated rather crudely' following the recommendations of East.24 

The present calculations use the second-order-accurate upwind scheme for y-derivatives in the 
convective transport terms; see equation (19) and Table II(a). Experience with the earlier method 
of Johnston' indicates that the QUICK scheme gives essentially identical results for this case. 

Figure 8 compares predictions using the Cebeci-Smith turbulence model with experiment. The 
boundary layer thins in the spanwise y-direction under the influence of the primary vortex flow 
field. The cross-stream mean-velocity component is overpredicted in the favourable spanwise 

Figure 6. Model geometry for RAE delta wing experiment 
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Figure 7. External flow conditions for RAE experiment 

pressure gradient region, t 3 / k  0 7 ,  and the boundary layer thickness is underpredicted. There is 
also a significant overprediction of the limiting surface streamline angle p, in the region near 
O l e =  0.7. The modification to the standard Cebeci-Smith model given in equation (43) has a small 
but adverse effect on the predictions. At the more outboard stations the spanwise pressure 
distribution becomes adverse. This results in negative cross-stream mean velocities in the 
boundary layer, but the magnitude of these is considerably underpredicted. However, the 
boundary layer is approaching separation in this region and there is likely to be a strong 
interaction between the inner viscous and outer inviscid flow fields. Also, Eastz5 calculates the 
cross-stream eddy viscosities to be only 40% of the corresponding streamwise values. Further, 
poor predictions by the Cebeci-Smith model of boundary layer development in favourable 
pressure gradient conditions have also been noted in two-dimensional flow situations.' 
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Figure 9 indicates only relatively minor improvements when the one-equation model is used. In 
contrast, the results from the two-equation model, Figure 10, are in substantially better agreement 
with experiment in the favourable pressure gradient region. The boundary layer thickness, cross- 
stream mean-velocity profile and limiting surface streamline angle are all well predicted for 
e/g< 0.7. There is, however, no improvement in results for the adverse pressure gradient region 
further outboard. 

Typical computer CPU times for the present calculation method are as follows: 0.774 s with the 
Cebeci-Smith algebraic turbulence model, 0.962 s using the one-equation model and 2.596 s for 
the two-equation model. These figures relate to computation time per surface station (with 65 grid 
points across the boundary layer) for the RAE delta wing case on a VAX 11/780 computer. 

CONCLUSIONS 

An efficient method to solve the three-dimensional turbulent boundary layer equations has been 
developed. The method is applicable to the compressible flow development over general 
developable surfaces by use of a curvilinear surface co-ordinate system. The governing mean-flow 
and, if applicable, turbulence transport equations are solved in finite difference form. In particular, 
upwind formulae are used to discretize the convective transport terms appearing in the equations. 
A consistent approach is taken to the discretization and linearization of the various equations by 
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Figure 9(c). One-equation turbulence model results for RAE experiment 

casting them all in a similar form. The implementation of algebraic, one-equation and two- 
equation turbulence models has been described. Calculations using all three turbulence models 
have been presented for two quasi-three-dimensional flow experiments. 

Detailed comparisons of predicted and measured mean-velocity and, in one case, shear stress 
profiles enable a number of preliminary conclusions to be made. The algebraic Cebeci-Smith 
model and a one-equation model, which solves the turbulent kinetic energy equation, give 
essentially the same results for the two cases considered. The two-equation turbulence model 
performs better for flows involving favourable pressure gradients. However, the performance of 
this model is inferior to the algebraic and one-equation models in adverse pressure gradient 
conditions. 

The present, albeit rather limited, evaluation indicates some of the more obvious deficiencies in 
the current state of the art as regards turbulence modelling for three-dimensional boundary layers. 
One main objective of the development of the present calculation method has been to provide a 
vehicle within which improvements to these ‘standard’ turbulence models can be investigated in a 
consistent way. Also, the use of a general discretization of the crossflow convective transport terms 
in the flow equations enables various proposals for approximating these important terms to be 
assessed. Finally, a version of the present method which solves the governing equations in inverse 
mode is desirable to allow the calculations to proceed into separated flow regions. 
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APPENDIX 

The boundary layer equations are solved in a curvilinear co-ordinate system consisting of two 
non-orthogonal surface co-ordinates X and Y with an angle 8 between them (Figure 1). The third 
co-ordinate Z is in a direction normal to the surface. The surface itself is defined in terms of 
Cartesian co-ordinates (x, r, z), the transformation between the two surface co-ordinate systems 
being given by 

In general, the functions g1 to g3 will not be known analytically. Ifds is an element of length on the 
surface, then 

ds2=dX2+dF2+dZ2=h:dX2+h2dY2+2hlh2~~~OdXdY, 

X = g , ( X ,  Y), T=g2(X, Y), Z=g3(X9 Y). 

with 
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The following metric quantities are also required: 

d(h,  cos8) ah, 

1 a6 

k -  

k ,  , = sin 8 [cos 8 ( k ,  + h, ?) dY - ( k ,  +h, %)I, 
k , ,  =L sin 0 [ cos 8( k ,  +; g) - ( k ,  +k g)] . 

The various derivatives appearing in the above equations are evaluated numerically using finite 
difference formulae. 

The mean-velocity profiles presented in the results section are plotted in terms of a co-ordinate 
system comprising the external flow streamlines and their orthogonal projections. U s  and U ,  are 
the local mean-velocity components within the boundary layer in these two directions. The 
limiting streamline angle at the surface, j,, is defined relative to the local external streamline 
angle a: 

p, = tan - [(a u,/az)/(d u,/az)] w .  

The wall shear stress fw is given by 

Finally, the two principal Reynolds shear stresses in the external streamline co-ordinate system 
are 

PLc au, - Pl dUc 
R az R az - pvw =- - . -puw =--, 
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